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Noise of Negative Resistance Oscillators

at High Modulation Frequencies

BURKHARD SCHIEK AND KLAUS SCHUNEMANN
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Absfrac&The theory of AM and FM noise in oscillators of the

negative resistance type is extended to higher modulation frequen-

cies, i.e., ta modulation frequencies beyond the bandwidth of the
stabilizing cavity. The results are expressed in terms of the input

fmped~ce of the stabilizing cavity and are found to agree well with
measurements.

1. INTRODUCTION

T

HE THEORI’ of oscillators, which allows to in-

vestigate the influence of the stabilizing circuit

on the noise performance of oscillators once the

origin of the noise is known, is well established [1 ]– [7 ].

The existing theories, however, are limited to small

modulation frequencies with respect to the bandwidth

of the cavity, as they mostly use Taylor series expan-

sions for the cavity impedance around the frequency of

operation. Thus for a high-~ cavity and oscillators

operating in the X band the validity of existing theories

is limited to modulation frequencies of about 1 MHz.

With the advent of superconducting cavities, the

3-dB bandwidth may be of the order of a few hertz,

and then the validity range is even more restricted. It

is the purpose of this paper to present a noise theory

which may be applied to much higher modulation fre-

quencies. The noise theory will be linear, i.e., phase

deviations due to noise within the oscillator are assumed

to be very small. Furthermore, it is required that the

cavity can be described by an equivalent circuit whose

input impedance is a quotient of two polynomials in ~fl

with real coefficients, where Q is the angular frequency.

Thus the theory is valid for lumped RLC equivalent

circuits with positive or negative RLC’S. In an example

it will be shown, however, how the theory can be ex-

tended if this condition is not satisfied. The presented

theory is applicable to negative-resistance-type oscillat-

ors such as tunnel diodes, Gunn, and IMPATT diodes, but

an extemjion to an amplifier-type oscillator is possible.

II. GENERAL THEORY

The theory is based upon the general circuit of Fig. 1.

The diodle reactance jxa is assumed to be nearly con-

stant in the small frequency range of interest and to be

compensated by, for example, a fictitious and passive

inductive reactance jQL in series to the diode reactance.

This reactance (jQL = jXo; X. +XdNO) is also nearly
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Fig. 1. Equivalent circuit for the oscillator.

constant in the frequency range of interest. The cavity is

characterized by its input impedance (Fig. 1)

E’(jfl)
Z’(jQ) = —

F’(yty
(la)

It is assumed, and this is very important for the deriva-

tion given below, that E’ and F’ are polynomials in

(jfil) with real coefficients. Then the impedance in the

plane a–a’ in Fig. 1 is

E(jf2)
Z(jfJ) = – jQL + Z’(jQ) = — o (lb)

F(jQ)

Also, E and F are polynomials in (jQ) with real coeffi-

cients.

The current id(t) into the impedance Z is not neces-

sarily the same current as the load current iz. In this

case & and iz are related by the current transformation

factor H(jQ)

N(N) .
id = II(jfl)ij = —“ .

D(jQ) ‘t
(2)

Also, the numerator and denominator of H(j$2) must be

polynomials injfil.

The current id shows amplitude and phase fluctua-

tions A.4a and Aqb. In the following only a linear noise

theory will be derived, i.e., AA d/A O, fk$d<<l. Then id

can be expressed as follows:

;~(t) = .4 o(t) cos (W+CYO+Md))

g(.~o+A~d(t)) [COS(W1-cio) –A@~(t) sin (Qt+aJ]

= Re [Ao@(~t+flO)+A$d( t)] (3)

where

[

f?dtj(t)
— + A@d(t)j

A. 1
has been abbreviated by A&(t). The fluctuation signals
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AAz(t), Adz(t), and A$l(t) of the load current il=(Al

+AA ~(t)) cos (Qt+A@l(t)) are defined in a similar way.

The fluctuation signals of the load current must now be

related to the fluctuation signals of the diode current.

Equation (2) gives

Did = Nit (4)

where

D = dm(.jQ)~ + dm-,(jil)~-l + . . .

N = an(jtl)” + a._l(jQ)”-l + . . . . (5)

In ac circuit theory (jfl)~ is equivalent to the mth

derivative dm/dtm in the time domain. JVith (3) and a

time dependence of the low-frequency signal Aq5~(t) of

and similarly for A~l, AA d, and AA 1, one obtains for the

rnth derivative of ‘&

(7a)

(7b)

The asterisk denotes the complex conjugate.

Introducing (7) into (4) and canceling the stationary

solution yields a relation between AAd, Add, and AA z,

HIHO* — HOH.l* AA 1
Add=–j

2HOHO* Al

HIHO* + HoH–l*
+

2HOHO*
A@l. (9)

In (9) the following definitions have been used:

Ho = H(jfl) HI = H@2 + ja) H_l = H(jfl –jw). (10)

Equation (9) may also be used to relate the fluctuation

signals A Ud, A~d of the diode voltage ud with AAd,

A@d of the diode current ‘id if the current transformation

factor H is substituted by the input impedance Z. At

the center frequency Z(jQ) = Z. (Z. real), and Z.= – Rd

(Fig. 1) and one obtains:

A U~ Z1 + Z_l* AAd Z1 – z_l*

Uo =
—+j A~d

2Z0 A, 2Z0

Z1 – Z–l* &id ZI + Z-I*
@d= –j —+

2Z0 A, 2Z0
Ar$d. (11)

Z1 and Z_l are defined as HI and H_l in (9). The further

development of the theory proceeds in a similar manner

as in [2], [3]. With e(t) as the noise source, the diode

loop equation for the equivalent circuit of Fig. 1 is

‘&(—& +j(xo + Xd)) + ‘?~d = e (12)

or

Re { [–Rd + j(Xo + Xd)]Aoe~at+[$d(tJ

+ uoe@t+.@l)eA@)-A~d(t) ~ = e(t). (13)

In the linear noise theory

eA&(t)-Arjd(t) = 1 + A;d(~) – fhjd(t). (14)

Multiplying (13) by cos (ftt+Acjd(t)) or Sin (~~+A~d(t)),

integrating over one period of the carrier frequency, and

introducing the abbreviations [2]

t
m(t) = –~ sTo t–T.

e(t’) sin [W’ + A&(t’) ] dt’ (1.5a)

2’
m(t) = ~ ( e(t’) cos [W’ + A@d(t’) ] dt’ (15b)

~ O 0 t—T.

(8)
d (ZO – Rd)

Z~–Rd= AAd = s.AAd
a.40

A similar second equation with jfi –ju is omitted, be- d(.~~ + Xd)

cause its evaluation will give no new results. The further
Xo+xd= .AAd = r.AAd

C?AO
evaluation of (8), which is sketched in the Appendix,

yields after some manipulations: one finally obtains

AAd HIHO* + HoH-l* AA z

(

ZI + Z-I*

)

AAd
—.

A. 2H13HO* A$
sAAd + –Zll —

2 A.

HIHO* – Ho. H-1”
+j

ZI – Z–I*
A&

‘?l~

2HOHO*
+.j z A~~ = —

A.

(15C)

(16a)
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(21 + 2.1’
—YA.~d -– )–Z. Add

2

ZI — Z–I* Ai& ‘n 1

+j—y —4(0=1 . (16b)

Equations (16a) and (16b) describe the AM and FM

noise of the diode current id as a function of the modula-

tion frequency u. In the limit of small a (16a) and

(16b) are identical ~vith (4) and (5) of Kuroliawa [3]

as

~im ~+ z._l*

( )

81m Z
—–ZO =j— OJ

0+0 2 dw

and

21 – Z–I* 8Re Z
lim _—
. --)0 2–13wu

and also

(17)

dAA (t) dA@(t)

dt
= jwAA — = jAAc&

dt

Inserting (9) into (16) allows AA 1 and Aqiz to be calcu-

lated for many practical situations. This will now be

illustrated by several examples.

111. EXAMPLES OF OSCILLATOR CIRCUITS

Equations (9) and (16) can be considerably simplified

if one takes the cavity for the oscillator to be sym-

metrical. Then

21 = Z–I* and H1 = H_l*, Ho = HO* (18)

and (9) and (16) can be combined to

AA1 HOnZ— (19a)
Ai – iE1(sAo + 21 – ZO)AO

Honl
AC$Z= --

HIAO(Z1 – 2.)

Hontz
— — ~ (19b)

H,(sAO + Z, – ZO)(.ZI – ZO)

Thus a r #O produces a correlation between AM and

FM noise.

1) Let us consider the simple RLC-series circuit of Fig.

2, which may represent a transmission-type cavity. With

the approximation j(Q+co)L+ l/(j(fl+co) C)3j2uL,

which is valid up to at least u/Q= 0.05, and with HI = Ho

the results are

AA1= -- “ (20a)
S.i o + j2aL

(transmission cavity, series tuned circuit)

(20b)

I I

Fig. 2. Transmission cavity represented by a series tuned circuit.

id

-’dElm’
Fig. 3. Transmission cavity represented by a paralled tuned circuit.

c

*

id
Rp

i IL

- Rd L R.

I I

Fig. 4. Equivalent circuit for a reaction-type ca~,ity.

For r = O, this is identical with the results derived in

[2]. Contrary to the derivation in [2], the applied ap-

proximation for the reactance is convenient but not

necessary.

The equivalent circuit of Fig. 3, which is the dual

circuit of Fig. 2, may also describe a transmission cavity.

With HI= 1 +2jcoRoC and evaluating (19) shows that

the asymptotic AM and FM noise behavior is the same

as for the series tuned circuit.

2) A possible form of an equivalent circuit for a reac-

tion-type cavity is shown in Fig. 4. The losses of the

cavity are determined by Rp, R. k the load resitance.

As

H, = Ho

Rp
ZI=Ro+—

1 + 2jmCRp
(21)

one obtains

AA1 =
ttz(l + 2j&Rp)

(22a)
SA 0(1 + 2jaKRp) — 2joKRp2

(reaction-type cavity)

IZ1(l + 2joKRp)
ArjIl = —

Ao.2jLLlcRp2

7922(1+ 2juCRp)2
+— ~ (22b)

2jwCRp2[sAo(l + 2jtiCRP) – 2jCJCRP2]

The theoretical results for the transmission and reac-

tion-type cavity—with the assumption of r<<s, i.e., an

omission of the second term on the right-hand side of

(20b) and (22 b)—are shown in Fig. 5 (a), (b). In this

figure, experimental results obtained with Gunn oscil-

lators at 16 GHz are also presented.

For the theoretical curves in Fig. 5(a), (b), both nl

and n, were assumed to be freauencv independent.
“, . . . . J . .
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Fig. 5. (a) FM noise spectra of cavity stabilized Gunn oscillators (fo = 16 GHz, band-
width 500 Hz). (b) AM noise spectra of cavity stabilized Gu nn oscillators (fo = 16 GHz,
bandwidth 500 Hz). P..,= 100 mW.

which is approximately true for Gunn oscillators at

higher modulation frequencies. The absolute values for

the theoretical curves have been chosen as to coincide

to the measured curves at low and high modulation

frequencies. The agreement between theory and experi-

ment is good, as can be seen from Fig. 5(a), (b). A de-

tailed discussion of these results has already been given

in [8].

3) Let us now assume that the cavity, which is again

described by its symmetric input impedance Zl = Z_I*,

is separated from the diode by a lossless transmission

line of electrical length ~1 (Fig. 6). The frequency de-

pendence of @l is assumed to be negligible with respect

to the frequency dependence of Z1, because the cavity

has a high quality factor.

Equation (16) cannot be applied directly to this

problem, because the input impedance of a transmission

line section terminated by an arbitrary impedance can-

not be described by a quotient of polynomials with real

coefficients, and therefore the derivation which leads to

(16) is no longer valid. In this case id and z/. are related

to i= and UZ (Fig. 6) via the transmission line equations.
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➤ ––– _ ———
possible for the condition of maximum output power

1 -Rd-;q ‘2]’ *=’ ’27)
L–––––––J ._ —— __ ._ ; Then

Fig. 6. Diode and ca~,ity separated by a lossless transmission
line of electrical length /31. ‘lL9

(28a)

The fluctuation signals of i. are defined by:

i. = (~e + A-4.) COS (~t + AI$,). (23)

ZI – Zo
nl cos 0+t~2 sin O—— sin (261+ 0)7z2

Zl+zll
A~, =

– (z,–Z,) Cos (2pl+f3)Ao
— (28b)

Similar definitions hold for the fluctuation

AAd, Aqii of ‘id and A Ud, Lk+!’d of u~.

Inserting (23) into the transmission line equations, S=kcose
comparing the coefficients of the cos Q1 and sin W

r=ksinfl, (29)
terms and using (11) yields linear equations which

relate the fluctuation signals:

AAa

[

ZI + Zo ZI – Zo

1
AA,

—. — ——
A. 2Z0

Cos ‘~1 —
2Z0 .4 ~

ZI – Zo
. ——

2Z0
sin (2/?1)

signals
where a diode angle 6 has been defined as [3]

A simplification is also possible if one considers only

low modulation frequencies, i.e., Z1 –ZO<<Z~+ZO = 2Z0.

Then

Ad. (24)
‘A=;;+ (l-%)’’2;:O?ST2;;:O;E (’”a)

and three similar equations for Add, A Ud/ lTO, and Atid.

The evaluation of the diode loop equation yields

(A Ud A.dij

)

w 2
SAAd + ZO — —

— (25a)
u, – All –x

—rA& — zr@+d — Lh#kz) = ‘A:. (25b)

Substituting AAd, A Ud, &bd, and A~d by (24), one ob-
tains two linear equations which can be solved for

AA, and Ad.:

{[

TAO
AA. = nz 1—sin 2@ — cos 2,(31

‘z,

nl cos O + nz sin O
A@, = —

– (Z, – Zo) cos (2/31 + 0) A. “
(30b)

Thus, for both approximations, the AM noise is nearly

independent of the line length @l, while the FM noise

power varies essentially proportional to cos–’ (2fl+O).

For low modulation frequencies this result may be

shown to be valid for a general circuit which satisfies

the following two conditions. 1) The transforming net-

work between the diode and the load is lossless but

otherwise arbitrary; losses in series or parallel to both

the load and the negative resistance are allowed. 2)

The oscillator is tuned to maximulm output power

[See (27) ].

For small modulation frequencies and neglecting the

very small AhI–FM conversion (9) reads

+“’(i+)sin’’’}”+z‘“a) lim
m-+0 [

A/id AAz d (HH*) 1
—. — +ju —dT. — Ar#q

Ad AZ 2HH*

(31)

rAo ZI+ Zo

[( -c0s2@) - ‘in2@l}
The condition that the transforming network is lossless

1- ‘nz —
2Z0 Z1 – Zo

relates Re Z and H via

4
1

AoCoeDe
(26b)

13Re (Z) d (HH*) 1
+zo —__ = o. (32)

&J au HH*

( %)-z’~oza
Inserting (27), (31), and (32) into (16) or its approxi-

CoeDe == – (ZI – ZO) 1 – mate form (17) yields for the AM fluctuations of the

load current

. [sAo COS 2@ – rAo sin 2/31]. (26c)
AAz ‘n2

. _——— (33a)

A considerable simplification of these equations is

——

Al AO(S. AO)
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Fig. 7. Noise of areaction cavity stabilized Gunn oscillator versus
the distance of the cavity from the oscillator (~o.i=l15 mW,
f,= 16 GHz, at 100 lcHz from the carrier in 5-lcHz bandwidth).

while the FM fluctuations can be calculated from (16)

and (17) to be

nl. cos O+n2. sin0
~~AooAr)t = — . (33b)

d Im (2) dRe Z
— ‘ ‘.cose+—

8(JJ
sin 0

aw

Equations (33a) and (33b) are very similar to (30a)

and (30 b). ‘

Thus the AM noise is independent of the particular

tuning of the outer circuit at low modulation frequencies

under rather general conditions. The results obtained

have been verified by measurements which have been

performed on the same cavity stabilized oscillators as in

Fig. 5. The results for the reaction cavity are shown in

Fig. 7. Care has been taken in order to tune the oscilla-

tor for maximum output power. The distance between

the oscillator and the cavity has been varied by a set of

disks. The measurements agree well with the theoretical

predictions as is also true for the transmission cavity.

IV. CONCLUSION

The linear noise theory of oscillators of the negative

resistance type has been extended to high modulation

frequencies, i.e., to modulation frequencies which are

higher than the bandwidth of the stabilizing cavity.

Although the formulas obtained are very simple to

use they are only applicable to lumped equivalent RLC
networks with positive or negative R, L, C elements.

By way of an example, it is shown how the theory can

also be extended to combinations of lumped equivalent

circuits and transmission line sections. Furthermore,

the theory has been applied to equivalent circuits of

transmission and reaction-type cavities and a close

agreement between theory and measurements has been

found, For low modulation frequencies it is shown that

the AM noise is independent of the particular tuning

of the circuit under rather general conditions.

APPENDIX

When evaluating (8) one has to bear in mind that the

operator jfl in (8) only applies to the carrier e~o~, while

the operator ju applies to the modulation signal e~W~.

This means that J2 changes the phase of the carrier by

90°, while ja changes the phase of the modulation sig-

nal. Comparing the coefficients of cos W and sin W of

(8) yields two equations which relate the fluctuation

signals of & and it.

In the equation below (Re D). is the even part of the

real part of D with respect to ~, (Re D). the odd part,

(Im D),,o are the corresponding imaginary parts of D,
respectively, etc. Writing, similar to (10), DI = D@
+ja), D-1”= D*(’jQ –ju) and

+(DI + D-I*) = (Re D), +j(Im D)O

~(Dl – D-l”) = (Re D)O + j(Im D). (34)

and similarly for N, (8) becomes:

/Ho / {(DI + D_,*) ~ +j(Dl - D_l*) ~A@,} COS a.

{

AAd

+1 Ho/” – (D, + D.,*)A4, + j(DI – D-,’) ~
)

A.41
~ ~ + j(IVl – N-I*). A@J. sin ao = (NI + A_ I*) .— (35}

and a similar second equation.

Solving (35) for AA ~ and A& and using

Ho + HO*
Ao. cosao = .A1

2

HO – HO*
Aosinao = —— At

23
(36)

and

NID–1* + AT–l*D1
= HI + H_l*

DI . D_l*
(37)

and a similar equation for FIl —H_l*, yields (9) of Sec-

tion 11. Equation (9) has already been obtained by

Tellegen and van Nie [9] in a somewhat different form

as has recently been pointed out to the authors by

van Nie.
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Stability Criteria for Phase-Locked Oscillators

G. H. BERTIL HANSSON AND K. INGEMAR LUNDSTROM

Abstract-Stability criteria for negative conductance oscillators

or amplifiers are derived in terms of the total circuit admittance. A
figure of merit for phase locking at small injected powers is derived.
The influence of large injected signals is studied. The conclusions

drawn from the calculations are in good qualitative agreement with
ezperirnental observations on phase-locked IMPATT-diode oscillators.

I. INTRODUCTION

P

HASE-LOCKED oscillators have been shown a

Iar;ge interest in recent years due to the possibility

of decreasing the FM noise of solid-state oscillators

by injection locking. The purpose of this paper is to

derive some general stability criteria for amplifiers and

phase-locked oscillators whose active element can be

described as a negative conductance (or negative resis-

tance). The analysis is similar to that used by Kuro-

kawa [1] and Brackett [2], who considered a general

circuit in contrast to Adler [3], who studied a simple

single resonant circuit. The stability criteria for a phase-

Iocked oscillator are derived in a different way and cast

in a different form that we find convenient to use. The

main difference is, however, that we use a general series

expansion for the negative conductance in contrast with

Kurokawa who used a first-order approximation [1, eq.

(11) ]. fine of the results of our theory is the introduction

of two border lines for stable locking [4], which are

called the boundary and locus curve, respectively, using

a notation introduced by Golay [5], who studied the

stability of a regenerative oscillator. It is shown by

experiments that these two curves have practical im-

plications. By calculating the boundary and locus

Manuscript received November 22, 1971; revised March 6, 1972.
The authors ?re with the Research Laboratory of Electronics

III, Chalmers Uruverslty of Technology, Gothenburg, Sweden.

H‘r

Fig. 1. (a) Equivalent circuit. (b) Circulator coupled
negative conductance element.

curves, hysteresis and jumps in output power can be

predicted.

The theory is applied to a simple cubic nonlinearity,

with both a nonlinear conductance and susceptance. It

is shown that the nonlinear susceptance introduces

asymmetrical locking properties at large injected powers.

II. CIRCUIT EQUATIONS

The starting point for our calculations is the equiv-

alent circuit shown in Fig. 1(a). In this circuit I. is a

current of frequency wi, which depends on the injected

power Pin. Ye is the admittance of the passive circuit as

seen from the active element. The active element is

described by a voltage-dependent susceptance

Yd = G@, o)) + jBrs(V, OJ) (1)

where V is the amplitude of the RF voltage across the

active element. Y, and 1. depend on the actual circuit.

A circulator coupled negative conductance element,

shown in Fig. 1(b), where the coupling circuit is de-


