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Noise of Negative Resistance Oscillators

at High Modulation Frequencies

BURKHARD SCHIEK axp KLAUS SCHUNEMANN

Abstraci—The theory of AM and FM noise in oscillators of the
negative resistance type is extended to higher modulation frequen-
cies, i.e., to modulation frequencies beyond the bandwidth of the
stabilizing cavity. The results are expressed in terms of the input
impedance of the stabilizing cavity and are found to agree well with
measurements.

I. INTRODUCTION

HE THEORY of oscillators, which allows to in-
Tvestigate the influence of the stabilizing circuit

on the noise performance of oscillators once the
origin of the noise is known, is well established [1]-[7].
The existing theories, however, are limited to small
modulation frequencies with respect to the bandwidth
of the cavity, as they mostly use Taylor series expan-
sions for the cavity impedance around the frequency of
operation. Thus for a high-Q cavity and oscillators
operating in the X band the validity of existing theories
is limited to modulation frequencies of about 1 MHz.
With the advent of superconducting cavities, the
3-dB bandwidth may be of the order of a few hertz,
and then the validity range is even more restricted. It
is the purpose of this paper to present a noise theory
which may be applied to much higher modulation fre-
quencies. The noise theory will be linear, i.e., phase
deviations due to noise within the oscillator are assumed
to be very small. Furthermore, it is required that the
cavity can be described by an equivalent circuit whose
input impedance is a quotient of two polynomials in jQ
with real coefficients, where {2 is the angular frequency.
Thus the theory is valid for lumped RLC equivalent
circuits with positive or negative RL(’'s. In an example
it will be shown, however, how the theory can be ex-
tended if this condition is not satisfied. The presented
theory is applicable to negative-resistance-type oscillat-
ors such as tunnel diodes, Gunn, and IMPATT diodes, but
an extension to an amplifier-type oscillator is possible.

11. GENERAL THEORY

The theory is based upon the general circuit of Fig. 1.
The diode reactance jX; is assumed to be nearly con-
stant in the small frequency range of interest and to be
compensated by, for example, a fictitious and passive
inductive reactance jQL in series to the diode reactance.
This reactance (JAL =jX,; Xo+Xs~0) is also nearly
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Fig. 1. Equivalent circuit for the oscillator.

constant in the frequency range of interest. The cavity is
characterized by its input impedance (Fig. 1)

E(j9)

209 = wie)

(1a)

It is assumed, and this is very important for the deriva-
tion given below, that E’ and F’ are polynomials in
(72) with real coefficients. Then the impedance in the
plane a~¢’ in Fig. 1 is
Z(5) QL + Z'(59) (9
= — ] == -———:——— .
F(j9)
Also, E and F are polynomials in (jQ) with real coeffi-
cients.

The current 74(f) into the impedance Z is not neces-
sarily the same current as the load current ¢;. In this
case 14 and 4; are related by the current transformation
factor H(j%)

(1b)

N(Q
iy = H(jQ)i, = 5%-(%-1’,. (2)

Also, the numerator and denominator of H(j2) must be
polynomials in j.

The current 4 shows amplitude and phase fluctua-
tions A44 and Ay In the following only a linear noise
theory will be derived, i.e., Ada/A4o, Apa<Kl. Then 44
can be expressed as follows:

1a(1) = A o(t) cos (Qi+aotAda(l))
(A g+ A4a()) [cos (Q+ ao) — Aga(t) - sin (Q+a) ]

=Re [Aoej(ﬂt+ao)+A$a(t)J (3

where

[AAd(t)

0

+ a0l

has been abbreviated by Agq(f). The fluctuation signals



636

AA(t), Adi(t), and Ad;(2) of the load current 7;=(4;
+AA4;(%)) cos (Q-+Ad;(f)) are defined in a similar way.
The fluctuation signals of the load current must now be
related to the fluctuation signals of the diode current.
Equation (2) gives

D-ig = N-i; 4)
where
D = dn(50)™ + dpna(FO™ 1+ - - -
N = a,(jO" + tua(jO 1+ - - -. (5)

In ac circuit theory ()™ is equivalent to the mth
derivative d™/di™ in the time domain. With (3) and a
time dependence of the low-frequency signal Agy(#) of

Ada(t) = A[Ada-e®t + Apgteiot] (6)

and similarly for A¢;, A4, and A4, one obtains for the
mth derivative of 44

d™ig am
o7 (Qé+ao)

= Ao"‘—‘ Re
dir
AAy ) )
+ y +A¢d -7 g7 @t+a0) .%eﬂwt

dim
0

AAG#* AN ,
+ ( y +A¢d* .]> g7 @tta0) .%e—Jwt}

0

(72)

=A0. Re {(jﬂ)m.ej(ﬂf'l'ao)

Adqg AP : .
-+ A_+A¢d .]> . (]Q_I_]w)m. %ey(ﬂﬁao) . plwt
0

AAg* . )
-+ ( y +A¢d* ]> (]'Q_]'w)m.%e.?(ﬂt-#ao) .e—-ywt} .
0
(7b)

The asterisk denotes the complex conjugate.
Introducting (7) into (4) and cancelling the stationary
solution yields a relation between AAy, Agy, and AA,,

A
FHG) |+ 2 da (52 + joym- [

A | na ]
4, *J

st gi@tre)) = B g . (§Q + jew)

AA, o
[ " —I—A¢l-j}ef“"~em‘. )

[

A similar second equation with 7Q—jw is omitted, be-
cause its evaluation will give no new results. The further
evaluation of (8), which is sketched in the Appendix,
yields after some manipulations:

Adg HH>*+ HH_* A4,
4, 2H H * A,

HyH¢* — Hy-H_*
2H Ho*
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Ads = — HHy* — HH_* A4,
2H H* 4,
HH¢* + HoH _1*
2H Hy*

Adr.  (9)

In (9) the following definitions have been used:
Hy= H(jQ) Hy,= H{Q+ju) H_y= H{GQ— jw). (10)

Equation (9) may also be used to relate the fluctuation
signals AU, AYq of the diode voltage uq with AA,,
Agg of the diode current 4 if the current transformation
factor H is substituted by the input impedance Z. At
the center frequency Z(jQ) =Z, (Z, real), and Zy= —Rq
(Fig. 1) and one obtains:

AUy Zy+Z.* Ady  Zy— Z_4*
= +J Aga
UO 2ZO Ao ZZO
Z,— Z_* Ay Zi+ Z_*
Ay = — 4 -+ Agg. (11
YT T A 2zs Ade @D

Zyand Z_, are defined as H; and H_; in (9). The further
development of the theory proceeds in a similar manner
as in [2], [3]. With e(#) as the noise source, the diode
loop equation for the equivalent circuit of Fig. 1 is

ta(—Ra +7(Xo+ Xo)) + ug = ¢ (12)
or
Re {[—Ra+ j(Xo + Xu)] 4 eitdvaw
+ era‘m+A¢‘>d(t)eAfvd(t)-A&d(t)} = e(f). (13)
In the linear noise theory
eAhaO—2da®) = 1 + AJ,(f) — Ada(d). (14)

Multiplying (13) by cos (Q¢t-+A¢a(t)) or sin (Qt+Ada(t)),
integrating over one period of the carrier frequency, and
introducing the abbreviations [2]

nm(l) = _TZ—O ft :Toe(t’) sin [Q# + A¢a(t)] d’ (15a)

2 t
ne(t) = — e(t) cos [Qf + Aga(t)] dt’ (15Db)
TO t—Ty
0(Zy — R
Zy — Rg = —E—u Adg = s-AAg
94,
0(Xo+ X
X0+Xd=—(0——d)-AAd=r-AAd (15C)
94,
one finally obtains
Zy+ Z4* AA
sAdg + (—1——1— - ZO> :
2 Ay
I N " (6
T %= *



SCHIEK AND SCHUNEMANN : NOISE OF NEGATIVE RESISTANCE OSCILLATORS

Zy+ Z_4*
—TAAd - ~——?—-—— — ZO A¢d

i — Z4* Ade m

J— =

2 A, A,

(16b)

Equations (16a) and (16b) describe the AM and FM
noise of the diode current 75 as a function of the modula-
tion frequency w. In the limit of small w (16a) and
(16b) are identical with (4) and (5) of Kurokawa [3]

as
. Zl + Z_l* (') Im Z
Im{ — - Zo> = j 2
w—0 Jw
and
L i —Za* O0ReZ
lim = 2 (17)
w0 2 aw
and also
JAA( dAP(L
—() = jwAd 0 = jwAdp.

dt

Inserting (9) into (16) allows AA; and A¢; to be calcu-
lated for many practical situations. This will now be
illustrated by several examples.

ITI. ExaMPLES oF OsciLLaToR CIRCUITS

Equations (9) and (16) can be considerably simplified
if one takes the cavity for the oscillator to be sym-
metrical. Then

Zl = Z..l* and Hl = H_l*, Ho = Ho* (18)
and (9) and (16) can be combined to
Ad Hyn
b o2 (192)
Al ]171(5140 "I— Zl - Zo)Ao
Honl
Agp= ——
H1AW(Zy — Zo)
Hyrn
e (19b)

B Hl(SAo + Z1 — Zo)(Zl - ZO) .

Thus a 7720 produces a correlation between AM and
FM noise.

1) Letusconsider the simple RL C-series circuit of Fig.
2, which may represent a transmission-type cavity. With
the approximation j(Q+w)L41/(j({Q@4w)C)~j2wL,
which is valid up to at least w/Q2=0.05, and with H; = H,
the results are

2

Ady=——2 (20a)
sdo + j2wL
(transmission cavity, series tuned circuit)
—n is
Agy = —— (20b)

A2j0l (sAo+ j2wLl)2jel
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Fig. 4. Equivalent circuit for a reaction-type cavity.

For »=0, this is identical with the results derived in
[2]. Contrary to the derivation in [2], the applied ap-
proximation for the reactance is convenient but not
necessary.

The equivalent circuit of Fig. 3, which is the dual
circuit of Fig. 2, may also describe a transmission cavity.
With Hy=1+4+2jwR,C and evaluating (19) shows that
the asymptotic AM and FM noise behavior is the same
as for the series tuned circuit.

2) A possible form of an equivalent circuit for a reac-
tion-type cavity is shown in Fig. 4. The losses of the
cavity are determined by Rp, R is the load resitance.
As

Hl = H()
Zy = Rod ——F (1)
T ¥ 2juCRy
one obtains
1ns(1 + 290CR
A4, = o1 + 2juCRr) (222)
sA40(1 + 2jwCRp) — 2jwCRp?
(reaction-type cavity)
11(1 + 2jwCR
Ag; = —1(———“‘”—“‘ d 2
Ay 2jCR p*
rng(1 + 25wCRp)?
(1 + 2juCRy) (22b)

2jwCR s Ao(l + 2jwCRr) — 2jwCR7?]

The theoretical results for the transmission and reac-
tion-type cavity—with the assumption of <, i.e., an
omission of the second term on the right-hand side of
(20b) and (22b)—are shown in Fig. 5(a), (b). In this
figure, experimental results obtained with Gunn oscil-
lators at 16 GHz are also presented.

For the theoretical curves in Fig. 5(a), (b), both u;
and %, were assumed to be frequency independent,
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(a) FM noise spectra of cavity stabilized Gunn oscillators (fo=16 GHz, band-

width 500 Hz). (b) AM noise spectra of cavity stabilized Gunn oscillators (fo =16 GHz,

bandwidth 500 Hz). Poas= 100 mW.

which is approximately true for Gunn oscillators at
higher modulation frequencies. The absolute values for
the theoretical curves have been chosen as to coincide
to the measured curves at low and high modulation
frequencies. The agreement between theory and experi-
ment is good, as can be seen from Fig. 5(a), (b). A de-
tailed discussion of these results has already been given
in [8].

3) Let us now assume that the cavity, which is again
described by its symmetric input impedance Z;=2Z_4*%,
is separated from the diode by a lossless transmission

line of electrical length B (Fig. 6). The frequency de-
pendence of B/ is assumed to be negligible with respect
to the frequency dependence of Z;, because the cavity
has a high quality factor.

Equation (16) cannot be applied directly to this
problem, because the input impedance of a transmission
line section terminated by an arbitrary impedance can-
not be described by a quotient of polynomials with real
coefficients, and therefore the derivation which leads to
(16) is no longer valid. In this case 74 and 4 are related
to ¢, and #, (Fig. 6) via the transmission line equations.



SCHIEK AND SCHUENEMANN: NOISE OF NEGATIVE RESISTANCE OSCILLATORS

[(Kg+Xg) [ Bl ————=]

| = ) |

| ia | Zo T : :

: -Rd? diode IJ”" " z(;m,m):

i

I J 5 !

! T I cavity l

L - L 1
Fig. 6. Diode and cavity separated by a lossless transmission

y

line of electrical length Si.

The fluctuation signals of 4, are defined by:

i, = (de + AA,) cos (U + Agy). (23)
Similar definitions hold for the fluctuation signals
AAd, A¢d of id and A Ud, All/d Of Ud.

Inserting (23) into the transmission line equations,
comparing the coefficients of the cos Qf and sin Qf
terms and using (11) vyields linear equations which
relate the fluctuation signals:

AA,

AAd [Z1+Zo Zl"ZO
A

= cos 251]
27, 27,

Ao

Zl—Zo

sin (26)- Ay (24)

0

and three similar equations for Agg, AUg/ Uy, and Ay,
The evaluation of the diode loop equation yields

Ay + Z <AUd 'A‘Ad) e (25a)

_ _ .
R N7 S 4,
"

—rAAg — Zo(AYa — Adg) = —Ai : (25b)
0

Substituting Adg, AU, Agg, and Ay by (24), one ob-
tains two linear equations which can be solved for
AA,and Ag,:

7’A0
AA; = 2
27,
SAO
+m
270

sin 28] — cos 231]

1
—1)sin28ly; -——— (26a
)Sm B} CoeDe (262)

sdo\ | sdo Zi+ Zy
A¢, = {nl I:(l — sin 281 +
27, 2Zy Zi— Zo
[er <Z1 + Z() 2ﬁl> N Z‘BZ-J}
- — — cos — sin
" 2z, \7Z: — z,
1
— (26b)
AyCoeDe
SAo Zl + Zo
CoeDe = — (Z1— Zy| 1 — >—
veDe = = (%1 °)< 2, 2,

«[s4q cos 281 — rA,sin 281].  (26¢)

A considerable simplification of these equations is
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possible for the condition of maximum output power

[2]:

S::lo -1
27, ) (27)
Then
V173
Ad.= (283)
Z+Z,
. Zi—Zy
711 €0S O+ 119 Sin 60— sin (281+0)n,
Agy= = (28b)
—(Zl—Zo) Ccos (2,81+0)A0
where a diode angle # has been defined as [3]
s="kcosf
r = ksin 6. (29)

A simplification is also possible if one considers only
low modulation frequencies, i.e., Z1—ZKZ;+Zy=22Z,.
Then

n sA44\ 12 cos 28] -+ 14 sin 26!
A, = 2 4 (1 — °> 2 08 261 " 1 sin 26 (30a)
Zo 2Zy kA cos (2814 6)
121 €08 0 - #25 sin
Ag, (30b)

T (Zi— Zy) cos (281 + )4y

Thus, for both approximations, the AM noise is nearly
independent of the line length 8/, while the FM noise
power varies essentially proportional to cos™2 (28/+-9).
For low modulation frequencies this result may be
shown to be valid for a general circuit which satisfies
the following two conditions. 1) The transforming net-
work between the diode and the load is lossless but
otherwise arbitrary; losses in series or parallel to both
the load and the negative resistance are allowed. 2)
The oscillator is tuned to maximum output power
[See (27)].

For small modulation frequencies and neglecting the
very small AM~FM conversion (9) reads

Ady A4, | dHH®) 1
_ e Ady
lim Ad Al Jw 2HH*
w0
Ady = Ay
\ (31)

The condition that the transforming network is lossless
relates Re Z and H via

d Re (Z d(HH* 1
e(2) , , oUIHY e

32
Ow dw Ho* (32)

Inserting (27), (31), and (32) into (16) or its approxi-
mate form (17) yields for the AM fluctuations of the
load current

Ad, Mg

Al - Ao(S'AU) (33a)
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Fig. 7. Noise of a reaction cavity stabilized Gunn oscillator versus

the distance of the cavity from the oscillator (Pout=115 mW,
fo=16 GHz, at 100 kHz from the carrier in 5-kHz bandwidth).

while the FM fluctuations can be calculated from (16)
and (17) to be

71:COS 0 - #y-5in 6
d1Im (Z) d Re Z
- —.cosf +

dw dw

iwdo Ady =

(33b)

sin @

Equations (33a) and (33b) are very similar to (30a)
and (30b). °

Thus the AM noise is independent of the particular
tuning of the outer circuit at low modulation frequencies
under rather general conditions. The results obtained
have been verified by measurements which have been
performed on the same cavity stabilized oscillators as in
Fig. 5. The results for the reaction cavity are shown in
Fig. 7. Care has been taken in order to tune the oscilla-
tor for maximum output power. The distance between
the oscillator and the cavity has been varied by a set of
disks. The measurements agree well with the theoretical
predictions as is also true for the transmission cavity.

1V. ConcLusION

The linear noise theory of oscillators of the negative
resistance type has been extended to high modulation
frequencies, i.e., to modulation frequencies which are
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higher than the bandwidth of the stabilizing cavity.
Although the formulas obtained are very simple to
use they are only applicable to lumped equivalent RLC
networks with positive or negative R, L, C elements.
By way of an example, it is shown how the theory can
also be extended to combinations of lumped equivalent
circuits and transmission line sections. Furthermore,
the theory has been applied to equivalent circuits of
transmission and reaction-type cavities and a close
agreement between theory and measurements has been
found. For low modulation frequencies it is shown that
the AM noise is independent of the particular tuning
of the circuit under rather general conditions.

APPENDIX

When evaluating (8) one has to bear in mind that the
operator jQ in (8) only applies to the carrier ¢%¢, while
the operator jw applies to the modulation signal e,
This means that jQ changes the phase of the carrier by
90°, while jw changes the phase of the modulation sig-
nal. Comparing the coefficients of cos Q¢ and sin Q¢ of
(8) vields two equations which relate the fluctuation
signals of 74 and ;.

In the equation below (Re D), is the even part of the
real part of D with respect to w, (Re D), the odd part,
(Im D),,, are the corresponding imaginary parts of D,
respectively, etc. Writing, similar to (10), D:=D(jQ
+jw), D_1* =D*(jQ —jw) and

(D1 + D_1*) = (Re D). + j(Im D),

1(Dy — D_+*) = (Re D), + j(Im D), (34)

and similarly for &, (8) becomes:

Adq
+](D1 — D,l*) A¢d} COS «y

Ao

A4

y LNy — N A, (35)
l

| Ho {<D1 + D_¥)

Ady
+ | Ho| -{—(D1+ D_*)Ady +j(Dy — Do)
0

'Sinao = (N]_—f“ N_l*)‘

and a similar second equation.
Solving (35) for Ad,; and A¢, and using

Ho+ Hy*
Ag-cos g = ————- A4,
2
. HO—H()*
Agsin qp = —— 4, (36)
2j

and
NiD_* + N_*D,
Dy-D_s*

= H,+ H_* (37
and a similar equation for Hy~H_;*, yields (9) of Sec-
tion II. Equation (9) has already been obtained by
Tellegen and van Nie [9] in a somewhat different form
as has recently been pointed out to the authors by
van Nie.
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Stability Criteria for Phase-Locked Oscillators

G. H. BERTIL HANSSON axp K. INGEMAR LUNDSTROM

Abstract—Stability criteria for negative conductance oscillators
or amplifiers are derived in terms of the total circuit admittance. A
figure of merit for phase locking at small injected powers is derived.
The influence of large injected signals is studied. The conclusions
drawn from the calculations are in good qualitative agreement with
experimental observations on phase-locked IMPATT-diode oscillators.

I. INTRODUCTION

HASE-LOCKED oscillators have been shown a
Plarge interest in recent years due to the possibility

of decreasing the FM noise of solid-state oscillators
by injection locking. The purpose of this paper is to
derive some general stability criteria for amplifiers and
phase-locked oscillators whose active element can be
described as a negative conductance (or negative resis-
tance). The analysis is similar to that used by Kuro-
kawa [1] and Brackett [2], who considered a general
circuit in contrast to Adler [3], who studied a simple
single resonant circuit. The stability criteria for a phase-
locked oscillator are derived in a different way and cast
in a different form that we find convenient to use. The
main difference is, however, that we use a general series
expansion for the negative conductance in contrast with
Kurokawa who used a first-order approximation [1, eq.
(11) ]. One of the results of our theory is the introduction
of two border lines for stable locking [4], which are
called the boundary and locus curve, respectively, using
a notation introduced by Golay [5], who studied the
stability of a regenerative oscillator. 1t is shown by
experiments that these two curves have practical im-
plications. By calculating the boundary and locus

Manuscript received November 22, 1971; revised March 6, 1972,
The authors are with the Research Laboratory of Electronics
I11, Chalmers University of Technology, Gothenburg, Sweden.
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Fig. 1. (a) Equivalent circuit. (b) Circulator coupled
negative conductance element.

curves, hysteresis and jumps in output power can be
predicted.

The theory is applied to a simple cubic nonlinearity,
with both a nonlinear conductance and susceptance. It
is shown that the nonlinear susceptance introduces
asymetrical locking properties at large injected powers.

I1. Circuit EQUATIONS

The starting point for our calculations is the equiv-
alent circuit shown in Fig, 1(a). In this circuit I, is a
current of frequency w;, which depends on the injected
power P;,. ¥, is the admittance of the passive circuit as
seen from the active element. The active element is
described by a voltage-dependent susceptance

YVa= Gd(V7 w) +.7Bd(V7 w) (1)

where V is the amplitude of the RF voltage across the
active element. ¥, and I, depend on the actual circuit.
A circulator coupled negative conductance element,
shown in Fig. 1(b), where the coupling circuit is de-



